Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37239369

RESUMO

Mitochondria are key organelles for cellular health and metabolism and the activation of programmed cell death processes. Although pathways for regulating and re-establishing mitochondrial homeostasis have been identified over the past twenty years, the consequences of disrupting genes that regulate other cellular processes, such as division and proliferation, on affecting mitochondrial function remain unclear. In this study, we leveraged insights about increased sensitivity to mitochondrial damage in certain cancers, or genes that are frequently mutated in multiple cancer types, to compile a list of candidates for study. RNAi was used to disrupt orthologous genes in the model organism Caenorhabditis elegans, and a series of assays were used to evaluate these genes' importance for mitochondrial health. Iterative screening of ~1000 genes yielded a set of 139 genes predicted to play roles in mitochondrial maintenance or function. Bioinformatic analyses indicated that these genes are statistically interrelated. Functional validation of a sample of genes from this set indicated that disruption of each gene caused at least one phenotype consistent with mitochondrial dysfunction, including increased fragmentation of the mitochondrial network, abnormal steady-state levels of NADH or ROS, or altered oxygen consumption. Interestingly, RNAi-mediated knockdown of these genes often also exacerbated α-synuclein aggregation in a C. elegans model of Parkinson's disease. Additionally, human orthologs of the gene set showed enrichment for roles in human disorders. This gene set provides a foundation for identifying new mechanisms that support mitochondrial and cellular homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans , Neoplasias , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Neoplasias/genética , Neoplasias/metabolismo
2.
BMC Biol ; 20(1): 228, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209095

RESUMO

BACKGROUND: One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS: We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, ß-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS: This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.


Assuntos
Sulfeto de Hidrogênio , Ácidos Nucleicos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Carbono/metabolismo , Ditiotreitol/metabolismo , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ligases/metabolismo , Lipídeos , Mercaptoetanol/metabolismo , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Vitaminas/metabolismo
3.
Aging Cell ; 21(11): e13710, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36088658

RESUMO

Mitochondrial dysfunction is one of the primary causatives for many pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and aging. Decline in mitochondrial functions leads to the loss of proteostasis, accumulation of ROS, and mitochondrial DNA damage, which further exacerbates mitochondrial deterioration in a vicious cycle. Surveillance mechanisms, in which mitochondrial functions are closely monitored for any sign of perturbations, exist to anticipate possible havoc within these multifunctional organelles with primitive origin. Various indicators of unhealthy mitochondria, including halted protein import, dissipated membrane potential, and increased loads of oxidative damage, are on the top of the lists for close monitoring. Recent research also indicates a possibility of reductive stress being monitored as part of a mitochondrial surveillance program. Upon detection of mitochondrial stress, multiple mitochondrial stress-responsive pathways are activated to promote the transcription of numerous nuclear genes to ameliorate mitochondrial damage and restore compromised cellular functions. Co-expression occurs through functionalization of transcription factors, allowing their binding to promoter elements to initiate transcription of target genes. This review provides a comprehensive summary of the intricacy of mitochondrial surveillance programs and highlights their roles in our cellular life. Ultimately, a better understanding of these surveillance mechanisms is expected to improve healthspan.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Humanos , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Estresse Oxidativo , Envelhecimento , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Leukemia ; 36(8): 2009-2021, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672446

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous group of aggressive hematological malignancies commonly associated with treatment resistance, high risk of relapse, and mitochondrial dysregulation. We identified six mitochondria-affecting compounds (PS compounds) that exhibit selective cytotoxicity against AML cells in vitro. Structure-activity relationship studies identified six analogs from two original scaffolds that had over an order of magnitude difference between LD50 in AML and healthy peripheral blood mononuclear cells. Mechanistically, all hit compounds reduced ATP and selectively impaired both basal and ATP-linked oxygen consumption in leukemic cells. Compounds derived from PS127 significantly upregulated production of reactive oxygen species (ROS) in AML cells and triggered ferroptotic, necroptotic, and/or apoptotic cell death in AML cell lines and refractory/relapsed AML primary samples. These compounds exhibited synergy with several anti-leukemia agents in AML, acute lymphoblastic leukemia (ALL), or chronic myelogenous leukemia (CML). Pilot in vivo efficacy studies indicate anti-leukemic efficacy in a MOLM14/GFP/LUC xenograft model, including extended survival in mice injected with leukemic cells pre-treated with PS127B or PS127E and in mice treated with PS127E at a dose of 5 mg/kg. These compounds are promising leads for development of future combinatorial therapeutic approaches for mitochondria-driven hematologic malignancies such as AML, ALL, and CML.


Assuntos
Neoplasias Hematológicas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias Hematológicas/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/patologia , Camundongos , Mitocôndrias/metabolismo
5.
PLoS Genet ; 18(3): e1010103, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275914

RESUMO

Monitoring mitochondrial function is crucial for organismal survival. This task is performed by mitochondrial surveillance or quality control pathways, which are activated by signals originating from mitochondria and relayed to the nucleus (retrograde response) to start transcription of protective genes. In Caenorhabditis elegans, several systems are known to play this role, including the UPRmt, MAPKmt, and the ESRE pathways. These pathways are highly conserved and their loss compromises survival following mitochondrial stress. In this study, we found a novel interaction between the box C/D snoRNA core proteins (snoRNPs) and mitochondrial surveillance and innate immune pathways. We showed that box C/D, but not box H/ACA, snoRNPs are required for the full function of UPRmt and ESRE upon stress. The loss of box C/D snoRNPs reduced mitochondrial mass, mitochondrial membrane potential, and oxygen consumption rate, indicating overall degradation of mitochondrial function. Concomitantly, the loss of C/D snoRNPs increased immune response and reduced host intestinal colonization by infectious bacteria, improving host resistance to pathogenesis. Our data may indicate a model wherein box C/D snoRNP machinery regulates a "switch" of the cell's activity between mitochondrial surveillance and innate immune activation. Understanding this mechanism is likely to be important for understanding multifactorial processes, including responses to infection and aging.


Assuntos
Mitocôndrias , Ribonucleoproteínas Nucleolares Pequenas , Animais , Caenorhabditis elegans/microbiologia , Imunidade Inata/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Nucleolar Pequeno , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo
6.
Sci Rep ; 11(1): 17733, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489512

RESUMO

Macroautophagic recycling of dysfunctional mitochondria, known as mitophagy, is essential for mitochondrial homeostasis and cell viability. Accumulation of defective mitochondria and impaired mitophagy have been widely implicated in many neurodegenerative diseases, and loss-of-function mutations of PINK1 and Parkin, two key regulators of mitophagy, are amongst the most common causes of heritable parkinsonism. This has led to the hypothesis that pharmacological stimulation of mitophagy may be a feasible approach to combat neurodegeneration. Toward this end, we screened ~ 45,000 small molecules using a high-throughput, whole-organism, phenotypic screen that monitored accumulation of PINK-1 protein, a key event in mitophagic activation, in a Caenorhabditis elegans strain carrying a Ppink-1::PINK-1::GFP reporter. We obtained eight hits that increased mitochondrial fragmentation and autophagosome formation. Several of the compounds also reduced ATP production, oxygen consumption, mitochondrial mass, and/or mitochondrial membrane potential. Importantly, we found that treatment with two compounds, which we named PS83 and PS106 (more commonly known as sertraline) reduced neurodegenerative disease phenotypes, including delaying paralysis in a C. elegans ß-amyloid aggregation model in a PINK-1-dependent manner. This report presents a promising step toward the identification of compounds that will stimulate mitochondrial turnover.


Assuntos
Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteostase/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Doenças Neurodegenerativas/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteostase/efeitos dos fármacos , Selenito de Sódio/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Bio Protoc ; 11(10): e4024, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34150931

RESUMO

Gene activation and cellular biomarkers are commonly monitored using fluorescent signals from transgenic reporters or dyes. These quantifiable markers are critical for biological research and serve as an incredibly powerful tool, even more so when combined with high-throughput screening. Caenorhabditis elegans is a particularly useful model in this regard, as it is inexpensive to grow in vast numbers, has a rapid generation time, is optically transparent, and can readily fit within 384-well plates. However, fluorescence quantification in worms is often cumbersome. Quantification is frequently performed using laborious, low-throughput, bias-prone methods that measure fluorescence in a comparatively small number of individual worms. Here we describe two methods, flow vermimetry using a COPAS BioSorter and an automated imaging platform and analysis pipeline using a Cytation5 multimode plate reader and image analysis software, that enable high-throughput, high-content screening in C. elegans. Flow vermimetry provides a better signal-to-noise ratio with fewer processing steps, while the Cytation5 provides a convenient platform to image samples across time. Fluorescence values from the two methods show strong correlation. Either method can be easily extended to include other parameters, such as the measurement of various metabolites, worm viability, and other aspects of cell physiology. This broadens the utility of the system and allows it to be used for a wide range of molecular biological purposes.

8.
Front Cell Infect Microbiol ; 11: 667327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996637

RESUMO

The genus Enterococcus includes two Gram-positive pathogens of particular clinical relevance: E. faecalis and E. faecium. Infections with each of these pathogens are becoming more frequent, particularly in the case of hospital-acquired infections. Like most other bacterial species of clinical importance, antimicrobial resistance (and, specifically, multi-drug resistance) is an increasing threat, with both species considered to be of particular importance by the World Health Organization and the US Centers for Disease Control. The threat of antimicrobial resistance is exacerbated by the staggering difference in the speeds of development for the discovery and development of the antimicrobials versus resistance mechanisms. In the search for alternative strategies, modulation of host-pathogen interactions in general, and virulence inhibition in particular, have drawn substantial attention. Unfortunately, these approaches require a fairly comprehensive understanding of virulence determinants. This requirement is complicated by the fact that enterococcal infection models generally require vertebrates, making them slow, expensive, and ethically problematic, particularly when considering the thousands of animals that would be needed for the early stages of experimentation. To address this problem, we developed the first high-throughput C. elegans-E. faecium infection model involving host death. Importantly, this model recapitulates many key aspects of murine peritonitis models, including utilizing similar virulence determinants. Additionally, host death is independent of peroxide production, unlike other E. faecium-C. elegans virulence models, which allows the assessment of other virulence factors. Using this system, we analyzed a panel of lab strains with deletions of targeted virulence factors. Although removal of certain virulence factors (e.g., Δfms15) was sufficient to affect virulence, multiple deletions were generally required to affect pathogenesis, suggesting that host-pathogen interactions are multifactorial. These data were corroborated by genomic analysis of selected isolates with high and low levels of virulence. We anticipate that this platform will be useful for identifying new treatments for E. faecium infection.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Antibacterianos/farmacologia , Caenorhabditis elegans , Farmacorresistência Bacteriana , Enterococcus , Enterococcus faecalis , Camundongos , Testes de Sensibilidade Microbiana , Fatores de Virulência
9.
BMC Biol ; 18(1): 74, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600387

RESUMO

BACKGROUND: Mitochondrial dysfunction causes or contributes to a wide variety of pathologies, including neurodegenerative diseases, cancer, metabolic diseases, and aging. Cells actively surveil a number of mitochondrial readouts to ensure that cellular homeostasis is maintained. RESULTS: In this article, we characterize the role of the ethanol and stress response element (ESRE) pathway in mitochondrial surveillance and show that it is robustly activated when the concentration of reactive oxygen species (ROS) in the cell increases. While experiments were mostly performed in Caenorhabditis elegans, we observed similar gene activation profile in human cell lines. The linear relationship between ROS and ESRE activation differentiates ESRE from known mitochondrial surveillance pathways, such as the mitochondrial unfolded protein response (UPRmt), which monitor mitochondrial protein import. The ability of the ESRE network to be activated by increased ROS allows the cell to respond to oxidative and reductive stresses. The ESRE network works in tandem with other mitochondrial surveillance mechanisms as well, in a fashion that suggests a partially redundant hierarchy. For example, mutation of the UPRmt pathway results in earlier and more robust activation of the ESRE pathway. Interestingly, full expression of ATFS-1, a key transcription factor for the UPRmt, requires the presence of an ESRE motif in its promoter region. CONCLUSION: The ESRE pathway responds to mitochondrial damage by monitoring ROS levels. This response is conserved in humans. The ESRE pathway is activated earlier when other mitochondrial surveillance pathways are unavailable during mitochondrial crises, potentially to mitigate stress and restore health. However, the exact mechanisms of pathway activation and crosstalk remain to be elucidated. Ultimately, a better understanding of this network, and its role in the constellation of mitochondrial and cellular stress networks, will improve healthspan.


Assuntos
Caenorhabditis elegans/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos
10.
PLoS Genet ; 13(6): e1006876, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28662060

RESUMO

All living organisms exist in a precarious state of homeostasis that requires constant maintenance. A wide variety of stresses, including hypoxia, heat, and infection by pathogens perpetually threaten to imbalance this state. Organisms use a battery of defenses to mitigate damage and restore normal function. Previously, we described a Caenorhabditis elegans-Pseudomonas aeruginosa assay (Liquid Killing) in which toxicity to the host is dependent upon the secreted bacterial siderophore pyoverdine. Although pyoverdine is also indispensable for virulence in mammals, its cytological effects are unclear. We used genetics, transcriptomics, and a variety of pathogen and chemical exposure assays to study the interactions between P. aeruginosa and C. elegans. Although P. aeruginosa can kill C. elegans through at least 5 different mechanisms, the defense responses activated by Liquid Killing are specific and selective and have little in common with innate defense mechanisms against intestinal colonization. Intriguingly, the defense response utilizes the phylogenetically-conserved ESRE (Ethanol and Stress Response Element) network, which we and others have previously shown to mitigate damage from a variety of abiotic stresses. This is the first report of this networks involvement in innate immunity, and indicates that host innate immune responses overlap with responses to abiotic stresses. The upregulation of the ESRE network in C. elegans is mediated in part by a family of bZIP proteins (including ZIP-2, ZIP-4, CEBP-1, and CEBP-2) that have overlapping and unique functions. Our data convincingly show that, following exposure to P. aeruginosa, the ESRE defense network is activated by mitochondrial damage, and that mitochondrial damage also leads to ESRE activation in mammals. This establishes a role for ESRE in a phylogenetically-conserved mitochondrial surveillance system important for stress response and innate immunity.


Assuntos
Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Mitocôndrias/genética , Pseudomonas aeruginosa/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Oligopeptídeos/genética , Pseudomonas aeruginosa/patogenicidade , Sideróforos/genética , Transdução de Sinais , Estresse Fisiológico/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...